Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 4492-4504, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240480

RESUMO

Accurately predicting the viscosity of water confined within nanotubes is vital for various technological applications. Traditional methods have failed in this regard, necessitating a novel approach. We introduced the jump-corrected confined Stokes-Einstein (JCSE) method and now employ the same to estimate the viscosity and diffusion in superhydrophobic nanotubes. Our study covers a temperature range of 230-300 K and considers three nanotube diameters. Results show that water inside superhydrophobic nanotubes exhibits a significantly lower viscosity and higher diffusion than those inside hydrophobic nanotubes. Narrower nanotubes and lower temperatures accentuate these effects. Furthermore, water inside superhydrophobic nanotubes display a lower viscosity than bulk water, with the difference increasing at lower temperatures. This reduction is attributed to weaker water-water interactions caused by a lower water density in the interfacial region. These findings highlight the importance of interfacial water density and its influence on nanotube viscosity, shedding light on nanoscale fluid dynamics and opening avenues for diverse applications.

2.
Phys Chem Chem Phys ; 25(45): 31431-31443, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37962400

RESUMO

A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Transição de Fase , Temperatura , 1,2-Dipalmitoilfosfatidilcolina/química , Termodinâmica , Fluidez de Membrana , Difusão
3.
Langmuir ; 39(49): 17889-17902, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032075

RESUMO

Surfactants are amphiphilic additives primarily used to reduce the surface tension of water and manipulate its wettability on various surfaces. Recent reports suggest that volatile surfactants, such as aroma molecules, diffuse more quickly to the interface from the vapor-phase than conventional surfactants typically used in the aqueous phase. The ability to adsorb from the vapor phase, in addition to their use as cosurfactants, expands the potential applications of volatile surfactants, particularly in situations where adding surfactants from the liquid phase is difficult. Here, we present a molecular level understanding of the adsorption kinetics of linalool, a common aroma molecule, on the water interface using molecular dynamics simulations. We note that the value of surface tension while adsorption from vapor and liquid phases is dependent only on the surface coverage. A minimum surface tension of 32 ± 1.8 mN/m is obtained in both cases at a maximum surface coverage of 4.88 µmol/m2 at 300 K. We observe the extent of decrease of the H-bonds between linalool-water and linalool-linalool molecules at various surface coverages to explain the mechanism of surface tension reduction. We solve Gibb's adsorption equation to establish a correlation between the surface coverage of linalool and the corresponding bulk concentration in experiments. We investigate the free energy profile of linalool's adsorption behavior at different surface coverages and temperatures. Our report suggests that linalool adsorption onto the water interface is an enthalpy-driven process primarily dependent on the strength of the interaction between the hydroxyl group of linalool and water molecules. These insights are crucial for selecting a suitable aroma molecule for various applications that target the vapor-phase adsorption mechanism.

4.
Phys Chem Chem Phys ; 25(35): 23645-23657, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609834

RESUMO

The mechanism of intrinsic fluorescence of carbon dots (CDs), the latest nanomaterial from the carbon family, was supposedly deciphered through multiple theories. However, the much sought-after persistent red emission of CDs as a foreseeable consequence of experiments remains elusive prompting the question of whether tuning of the red emission of CDs is a predictable outcome or a serendipitous coincidence. Herein, we tried to decode the same by exploring Alizarin Red S (ARS)-based red emitting CDs in different solvents with wisely chosen analytical tools. The findings are aptly supported by molecular dynamics studies through an experimental intuition-driven model-building approach. Parallel interception of the CDs with powder X-ray diffraction (pXRD) and photophysical spectroscopic studies revealed an important relationship between the solvent and CDs. Tautomerism, a well-known phenomenon with chemical entities, was found to be operative for CDs that greatly influence the Stokes shift and ultimately the fluorescence outcome. Most importantly, pXRD studies established the turbostratism of the CDs where the well-ordered graphitic structure of CDs gets disrupted with solvent molecules. The extent of such disruption is a function of solvent and CD composition that plays a formidable role in obtaining red fluorescence. Thus, for the first time, we demonstrate that the red emission of CDs is related to its structural integrity and if taken care of could be sustained, a tremendously desirable outcome for relevant applications.

5.
J Phys Chem B ; 127(22): 4939-4951, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226892

RESUMO

Past experiments rationalized the observed dynamic heterogeneity and non-Gaussian diffusion in living cell membranes in terms of slow-active remodeling of the underlying cortical actin network. In this work, we demonstrate that the nanoscopic dynamic heterogeneity can also be explained via the lipid raft hypothesis, which postulates a phase separation between liquid-ordered (Lo) and liquid-disordered (Ld) nanodomains. Non-Gaussian displacement distribution is observed in the Lo domain for a long time, even when the mean square displacement becomes Fickian. This Fickian yet non-Gaussian diffusion is found particularly in the Lo/Ld interface consistent with the "diffusing diffusion" picture. A translational jump-diffusion model, previously employed to explain the diffusion-viscosity decoupling in supercooled water, is used here to quantitatively explain the long-term dynamic heterogeneity where a strong correlation between translational jump and non-Gaussian diffusion is observed. Therefore, this study proposes a novel approach to elucidate the dynamic heterogeneity and non-Gaussian diffusion in the cell membrane crucial for various cell membrane functionalities.

6.
J Phys Chem B ; 127(20): 4496-4507, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37194438

RESUMO

Trehalose, a disaccharide renowned for its ability to stabilize biomolecular architectures under strenuous conditions, finds extensive use in the cryopreservation of probiotics. A profound comprehension of its molecular-level interactions is of great significance. It is notable that current research in the realm of lipid-sugar interactions primarily employs single-component lipid bilayers, which are far from being representative of real cell membranes. Our investigation, however, utilizes molecular dynamics simulations to delve into the specifics of a realistic Escherichia coli membrane that encompasses a diverse array of lipid types, comprising fourteen distinct species, subject to varying hydration levels. The results of our study showcase that the reduction of hydration levels induces lipid ordering and the formation of gel phases, yet trehalose, by forming hydrogen bonds with lipid headgroups, serves to uphold fluidity and supplant the role of water. Moreover, our findings evince that augmented trehalose concentrations lead to a slowdown in lipid motion and contribute to the maintenance of fluidity by way of endowing a viscous matrix. It is noteworthy that our conclusions lend support to the notion that water replacement and vitrification, despite their seemingly disparate nature, need not be considered mutually exclusive in a real bacterial membrane.


Assuntos
Dessecação , Trealose , Trealose/química , Bicamadas Lipídicas/química , Dissacarídeos , Água/química
7.
J Phys Chem B ; 127(7): 1607-1617, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36790194

RESUMO

The cyclopropanation of unsaturated lipid acyl chains of some bacterial cell membranes is an important survival strategy to protect the same against drastic cooling. To elucidate the role of cyclopropane ring-containing lipids, we have simulated the lipid membrane of Escherichia coli (E. coli) and two modified membranes by replacing the cyclopropane rings with either single or double bonds at widely different temperatures. It has been observed that the cyclopropane rings provide more rigid kinks in the lipid acyl chain compared to the double bonds and therefore further reduce the packing density of the membrane and subsequently enhance the membrane fluidity at low temperatures. They also inhibit the close packing of other lipids and deleterious phase separation by strongly interacting with them. Therefore, this study has explained why E. coli bacterial strain, susceptible to freezing environments, relies on the cyclopropanation of an unsaturated chain.


Assuntos
Resposta ao Choque Frio , Escherichia coli , Escherichia coli/metabolismo , Ácidos Graxos/química , Membrana Celular , Ciclopropanos/metabolismo
8.
J Phys Chem B ; 126(39): 7638-7650, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36166758

RESUMO

A recent experiment has reported the lipidome remodeling of a soil-based plant-associated bacterium Methylobacterium extorquens due to diurnal temperature variations. The key adaptation strategy is the headgroup-specific remodeling of the acyl chain. To understand the idiosyncratic adaptation at the molecular level, we simulate the model membrane of the same bacterium using the reported lipidome compositions at four different experimental temperatures. We investigate the temperature-dependent packing density and fluidity of the membrane, the constancy of which is key to the homeoviscous adaptation. The results show that complex lipidome remodeling approximately preserves membrane properties under heat and cold stress. The headgroup-specific remodeling of the acyl chain serves to fine-tune the packing density and fluidity of the membrane at different temperatures. While lipids with strongly interacting headgroups are more abundant at higher temperatures, the lipidome is more dominated by lipids with weaker interacting headgroups at lower temperatures. This adaptation alleviates lipid membrane disruption caused by heat and cold stress. This study provides a molecular picture of the homeoviscous adaptation of the realistic lipid membrane of a soil-based bacterium.


Assuntos
Bactérias , Solo , Lipídeos , Membranas , Temperatura
9.
Phys Chem Chem Phys ; 24(31): 18738-18750, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900000

RESUMO

A series of experimental and simulation studies examined the validity of the Stokes-Einstein relationship (SER) of water in binary water/alcohol mixtures of different mixture compositions. These studies revealed a strong non-monotonic composition dependence of the SER with maxima at the specific alcohol mole fraction where the non-idealities of the thermodynamic and transport properties are observed. The translational jump-diffusion (TJD) approach elucidated the breakdown of the SER in pure supercooled water as caused by the jump translation of molecules. The breakdown of SER in the supercooled water/methanol binary mixture was successfully explained using the same TJD approach. To further generalize the picture, here we focus on the non-monotonic composition dependence of SER breakdown of water in two water/alcohol mixtures (water/ethanol and water/propanol) for a broad temperature range. In agreement with previous studies, maximum breakdown of SER is observed for the mixture with alcohol mole fraction x = 0.2. Diffusion of the water molecules at the maximum SER breakdown point is largely contributed by jump-diffusion. The residual-diffusion, obtained by subtracting the jump-diffusion from the total diffusion, approximately follows the SER for different compositions and temperatures. We also performed hydrogen (H-)bond dynamics and observed that the contribution of jump-diffusion is proportional to the total free energy of activation of breaking all H-bonds that exist around a molecule. This study, therefore, suggests that the more a molecule is trapped by H-bonding, the more likely it is to diffuse through the jump-diffusion mechanism, eventually leading to an increasing degree of SER breakdown.

10.
J Phys Chem B ; 126(20): 3705-3716, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35545798

RESUMO

Unrestricted emission of volatile organic compounds (VOCs)─a threat to human health and the environment─can be controlled to a large extent by the capturing mechanism. Few recent experimental studies explored the efficacy of the deep eutectic solvent (DES), a designer solvent with some fascinating properties, as a VOC-capturing medium. Through the partition coefficient measurement, it was found that the choline chloride-based DESs exhibit excellent VOC-capturing potencies. However, a molecular picture of the above absorption process is still lacking. Here, we study the molecular mechanism of the absorption of two commonly occurring VOCs, toluene and acetaldehyde, in two different choline chloride-based DESs with varying donor molecules, urea, and levulinic acid via the molecular dynamics simulation technique. Strong absorption of the VOCs is observed in both the DESs. The free energy profile for the absorption process has been explored using the umbrella sampling method. The VOCs are preferentially solvated near the liquid/vapor interface. The simulated partition coefficients for the VOCs from the vapor to the liquid phase show good agreement with the experimental results. Detailed analyses of the spatial and orientational structure of the VOCs and different components of DESs are performed to elucidate the interaction among them. The above analyses have indicated that DES is a better VOC-capturing medium compared to a room-temperature ionic liquid, which is more extensively studied in the literature.


Assuntos
Colina , Compostos Orgânicos Voláteis , Acetaldeído , Colina/química , Solventes Eutéticos Profundos , Gases , Humanos , Solventes/química , Tolueno
11.
J Phys Chem B ; 126(12): 2430-2440, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294202

RESUMO

Earlier, ab initio and reactive force-field-based molecular dynamics (MD) simulation studies suggested an overwhelming contribution of the vehicular diffusion in the total diffusion of hydroxide ions rather than structural diffusion. But does the vehicular diffusion occur via small-step displacement? This question is important to have an understanding of the real characteristics of vehicular diffusion. To answer this question, we perform a classical molecular dynamics simulation of a system containing a hydroxide ion exchange membrane polymer and hydroxide ion at different hydration levels and temperatures using the same molecular force field (Dubey, V. Chem. Phys. Lett. 2020, 755, 137802), which successfully captured the microscopic structure and dynamics of the system. We use the translational jump-diffusion approach, used previously in supercooled water for understanding the origin of breakdown of the Stokes-Einstein relation, to calculate the jump-diffusion coefficient of hydroxide ion and water in the anion exchange membrane. We have seen a significant role of hydration level and temperature in the mechanism of vehicular diffusion. In overhydrated membrane, both hydroxide ions and water molecules diffuse via both small- and large-step displacement. With decreasing hydration level and temperature, the diffusion is increasingly governed by the jump-diffusion mechanism. The larger contribution of jump-diffusion comes from the stronger caging of the diffusing species by the solvent at lower hydration levels and temperature. These results, therefore, suggest that the hydration level and temperature of the hydroxide ion exchange membrane determine the detailed mechanism of the vehicular diffusion of hydroxide ion, especially whether the diffusion follows hydrodynamics or not.


Assuntos
Hidróxidos , Água , Difusão , Simulação de Dinâmica Molecular , Água/química
12.
J Phys Chem B ; 126(7): 1426-1440, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35139638

RESUMO

Organisms dwelling in ocean trenches are exposed to the high hydrostatic pressure of ocean water. Increasing pressure can alter the membrane packing density and fluidity and trigger the fluid-to-gel phase transition. To combat environmental stress, the organisms synthesize small polar solutes, which are known as osmolytes. Urea and trimethylamine-N-oxide (TMAO) are two such solutes found in deep-sea creatures. While TMAO stabilizes protein, urea induces protein denaturation. These solutes strongly influence the packing density and membrane fluidity of the lipid bilayer at different conditions. But can these solutes affect the pressure-induced phase transition of the lipid membrane? In the present work, we have studied the effect of these two solutes on pressure-induced fluid-to-gel phase transition based on the all-atom molecular dynamics (MD) simulation approach. A high-pressure-stimulated fluid-to-gel phase transition of the membrane is seen at 800 bar, which is consistent with previous experiments. We have also observed that in the low-pressure region (1-400 bar), urea slightly increases the membrane fluidity where TMAO decreases the same. However, the phase transition pressure remains almost unchanged on the addition of urea while TMAO shifts the phase transition toward a lower pressure. We have found that the hydrogen (H)-bond interaction between lipid and urea plays an important role in preserving the fluidity of the membrane in the low-pressure zone. However, at a higher pressure, both water and urea are excluded from the membrane surface. TMAO is also excluded from the interfacial region of the membrane at all pressures. Exclusion from the membrane surface further triggers the phase transition of the lipid membrane from the fluid to gel phase at a high pressure.


Assuntos
Metilaminas , Ureia , Lipídeos , Metilaminas/química , Soluções , Ureia/química , Água/química
13.
Phys Chem Chem Phys ; 23(48): 27294-27303, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34850794

RESUMO

Phenylketonuria (PKU) is an autosomal recessive error of phenylalanine (Phe) metabolism, where untreated Phe becomes cytotoxic. Previous experiments found that excess Phe decreases the packing density and increases the fluidity and permeability of a lipid membrane. It was proposed that Phe forms cytotoxic nanoscopic amyloid-like fibrils. In another study, the Phe fibrils were not visible near the lipid membrane. So, what leads to the deleterious effect of Phe on the lipid membrane? We put forward a molecular mechanism for the observed effect of excess Phe on the lipid membrane using all-atom molecular dynamics simulation. This study suggests that Phe monomers spontaneously intercalate into the membrane and form small hydrogen-bonded clusters, some of which locally perturb the membrane. These local effects result in an overall reduction in the membrane packing density, enhancement of membrane fluidity, and an increase of water permeability, observed in experiments. The present study does not observe any effect of the nanoscopic fibrillar structure of Phe on the membrane. This study, therefore, provides alternative insights into the excess Phe cytotoxicity in PKU disease.


Assuntos
Lipídeos de Membrana/química , Fenilalanina/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Permeabilidade , Água/química
14.
J Phys Chem B ; 125(41): 11473-11490, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34623157

RESUMO

Protonation of the strong base methylamine CH3NH2 by carbonic acid H2CO3 in aqueous solution, HOCOOH···NH2CH3 → HOCOO-···+HNH2CH3, has been previously studied ( J. Phys. Chem. B 2016, 109, 2271-2280; J. Phys. Chem. B 2016, 109, 2281-2290) via Car-Parinnello molecular dynamics. This proton transfer (PT) reaction within a hydrogen (H)-bonded complex was found to be barrierless and very rapid, with key reaction coordinates comprising the proton coordinate, the H-bond separation RON, and a solvent coordinate, reflecting the water solvent rearrangement involved in the neutral to ion pair conversion. In the present work, the reaction's charge flow aspects are analyzed in detail, especially a description via Mulliken charge transfer for PT (MCTPT). A natural bond orbital analysis and some extensions of them are employed for the complex's electronic structure during the reaction trajectories. Results demonstrate that consistent with the MCTPT picture, the charge transfer (CT) occurs from a methylamine base nonbonding orbital to a carbonic acid antibonding orbital. A complementary MCTPT reaction product perspective of CT from the antibonding orbital of the HN+ moiety to the nonbonding orbital of the oxygen in the H-bond complex is also presented. σOH and σHN+ bond order expressions show this CT to occur within the H-bond OHN triad, an aspect key for simultaneous bond-breaking and -forming in the PT reaction.


Assuntos
Ácido Carbônico , Prótons , Elétrons , Solventes , Água
15.
J Phys Chem B ; 125(36): 10149-10165, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34486370

RESUMO

Living organisms are often exposed to extreme dehydration, which is detrimental to the structure and function of the cell membrane. The lipid membrane undergoes fluid-to-gel phase transition due to dehydration and thus loses fluidity and functionality. To protect the fluid phase of the bilayer these organisms adopt several strategies. Enhanced production of small polar organic solutes (also called osmolytes) is one such strategy. Urea and trimethylamine N-oxide (TMAO) are two osmolytes found in different organisms combating osmotic stress. Previous experiments have found that both these osmolytes have strong effects on lipid membrane under different hydration conditions. Urea prevents the dehydration-induced phase transition of the lipid membrane by directly interacting with the lipids, while TMAO does not inhibit the phase transition. To provide atomistic insights, we have carried out all-atom molecular dynamics (MD) simulation of a lipid membrane under varying hydration levels and studied the effect of these osmolytes on different structural and dynamic properties of the membrane. This study suggests that urea significantly inhibits the dehydration-induced fluid-to-gel phase transition by strongly interacting with the lipid membrane via hydrogen bonds, which balances the reduced lipid hydration due to the decreasing water content. In contrast, TMAO is excluded from the membrane surface due to unfavorable interaction with the lipids. This induces further dehydration of the lipids which reinforces the fluid-to-gel phase transition. We have also studied the counteractive role of TMAO on the effect of urea on lipid membrane when both the osmolytes are present. TMAO draws some urea molecules out of the membrane and thereby reduces the effect of urea on the lipid membrane at lower hydration levels. This is similar to the counteraction of urea's deleterious effects on protein by TMAO. All these observations are consistent with the experimental results and thus provide deep molecular insights into the role of these osmolytes in protecting the fluid phase of the membrane, the key survival strategy against osmotic-stress-induced dehydration.


Assuntos
Desidratação , Ureia , Humanos , Lipídeos , Metilaminas
16.
Phys Chem Chem Phys ; 23(36): 19964-19986, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515269

RESUMO

Although water is the most ubiquitous liquid it shows many thermodynamic and dynamic anomalies. Some of the anomalies further intensify in the supercooled regime. While many experimental and theoretical studies have focused on the thermodynamic anomalies of supercooled water, fewer studies explored the dynamical anomalies very extensively. This is due to the intricacy of the experimental measurement of the dynamical properties of supercooled water. Violation of the Stokes-Einstein relation (SER), an important relation connecting the diffusion of particles with the viscosity of the medium, is one of the major dynamical anomalies. In absence of experimentally measured viscosity, researchers used to check the validity of SER indirectly using average translational relaxation time or α-relaxation time. Very recently, the viscosity of supercooled water was accurately measured at a wide range of temperatures and pressures. This allowed direct verification of the SER at different temperature-pressure thermodynamic state points. An increasing breakdown of the SER was observed with decreasing temperature. Increasing pressure reduces the extent of breakdown. Although some well-known theories explained the above breakdown, a detailed molecular mechanism was still elusive. Recently, a translational jump-diffusion (TJD) approach has been able to quantitatively explain the breakdown of the SER in pure supercooled water and an aqueous solution of methanol. The objective of this article is to present a detailed and state-of-the-art analysis of the past and present works on the breakdown of SER in supercooled water with a specific focus on the new TJD approach for explaining the breakdown of the SER.

17.
J Phys Chem B ; 125(4): 1167-1180, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481606

RESUMO

Extremophiles adopt strategies to deal with different environmental stresses, some of which are severely damaging to their cell membrane. To combat high osmotic stress, deep-sea organisms synthesize osmolytes, small polar organic molecules, like trimethylamine-N-oxide (TMAO), and incorporate them in the cell. TMAO is known to protect cells from high osmotic or hydrostatic pressure. Several experimental and simulation studies have revealed the roles of such osmolytes on stabilizing proteins. In contrast, the effect of osmolytes on the lipid membrane is poorly understood and broadly debated. A recent experiment has found strong evidence of the possible role of TMAO in stabilizing lipid membranes. Using the molecular dynamics (MD) simulation technique, we have demonstrated the effect of TMAO on two saturated fully hydrated lipid membranes in their fluid and gel phases. We have captured the impact of TMAO's concentration on the membrane's structural properties along with the fluid/gel phase transition temperatures. On increasing the concentration of TMAO, we see a substantial increase in the packing density of the membrane (estimated by area, thickness, and volume) and enhancement in the orientational order of lipid molecules. Having repulsive interaction with the lipid head group, the TMAO molecules are expelled away from the membrane surface, which induces dehydration of the lipid head groups, increasing the packing density. The addition of TMAO also increases the fluid/gel phase transition temperature of the membrane. All of these results are in close agreement with the experimental observations. This study, therefore, provides a molecular-level understanding of how TMAO can influence the cell membrane of deep-sea organisms and help in combating the osmotic stress condition.


Assuntos
Lipídeos , Metilaminas , Membrana Celular , Pressão Osmótica
18.
J Phys Chem B ; 124(46): 10398-10408, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33153260

RESUMO

A recent experiment has directly checked the validity of the Stokes-Einstein (SE) relation for pure water, pure methanol, and their binary mixtures of three different compositions at different temperatures. The effect of composition on the nature of breakdown of the SE relation is interesting. While in the majority of the systems, an increasing SE breakdown is observed with decreasing temperature, the breakdown is already significant at higher temperatures for the equimolar mixture. Violations of the SE relation in pure supercooled water at different temperatures and pressures have been previously explained using the translational jump-diffusion (TJD) approach, which provides a fundamental molecular basis, by directly connecting the SE breakdown with jump-diffusion of the molecules. We have used the same TJD approach for explaining the SE breakdown for the methanol/water binary mixtures of compositions studied in the experiment over a wide range of temperatures between 220 K and 300 K. We have understood that the jump-diffusion is the key responsible factor for the SE breakdown. The maximum jump-diffusion contribution gives rise to the early SE breakdown observed for the equimolar mixture observed in the experiment. This study, therefore, provides molecular insight into the SE breakdown for the supercooled water/methanol binary mixture, as found in the experiment.

19.
J Phys Chem Lett ; 11(18): 7709-7716, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32840376

RESUMO

Homeoviscous adaptation (maintenance of a critical balance between the saturated and unsaturated lipids) of the cell membrane of psychrotolerant bacteria is essential to protect them against freeze-thaw cycle. But how does the homeoviscous adaptation protect the cell membrane during cold stress? In this Letter, we answer this question using a coarse-grained molecular dynamics simulation technique. On the basis of the reported fatty acid profiles of psychrotolerant bacteria at different temperatures, multiple lipid membranes are simulated at a wide range of temperatures between 250 and 300 K. We explicate how the homeoviscous adaptation minimizes the effect of cold stress on the structure and fluidity of the membrane. Partial freezing of the saturated lipid domain occurs with the self-aggregation of saturated and unsaturated lipids near the melting temperature of the unadapted lipid membrane. The gel-like phase provides necessary local packing density that can be sensed by sensor proteins responsible for the homeoviscous adaptation.


Assuntos
Adaptação Fisiológica , Membrana Celular/química , Flavobacteriaceae/química , Lipídeos/química , Flavobacteriaceae/citologia , Temperatura
20.
Phys Chem Chem Phys ; 22(11): 6335-6350, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32134073

RESUMO

The major applications of carbon dots (CDs) (e.g. bio-imaging and targeted drug delivery) necessitate the latter to permeate across the lipid bilayer membrane. Unfortunately, the mechanism of permeation is poorly understood. Between the two possible routes for permeation of a nanoparticle like CDs-an endocytic pathway and direct passive permeation-the endocytic path is known to be more common, despite the fact that the passive permeation is preferred over the endocytosis for targeted drug delivery. Here, we have focused on the direct permeation of a hydroxyl functionalized CD across the POPC lipid bilayer membrane using all-atom MD simulations. We have estimated the free energy profile for the translocation of the CD across the lipid bilayer, with a barrier height of ∼170 kJ mol-1 situated at the lipid bilayer center (z = 0 nm). Using the free energy profile, we have calculated a negligible permeability coefficient value, which strongly suggests that it is almost impossible for a CD to penetrate directly across the lipid bilayer. The possible impact on the lipid bilayer structure by the CD is also investigated. Although the CD does not affect the bilayer structure up to a certain degree of penetration, the impact increases substantially when entered into the bilayer interior.


Assuntos
Carbono/química , Carbono/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Sistemas de Liberação de Medicamentos , Hidroxilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...